# What is the Philosophy of Cognitive Development?

Why do we need it?

### Studying cognitive development

#### What's the motivation?

- Gain insights into the nature of the mind
- ... by studying how minds could develop.

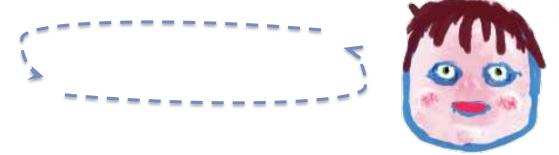
Start simple and build up (Brooks 1999).





### What is an account of cognitive development?

- Model of cognitive abilities of individual at  $T^1$
- Model of cognitive abilities of individual at  $T^2$
- Characterisation of (key stages in) transition:
  - internal states of developing individual
  - external states and interactions

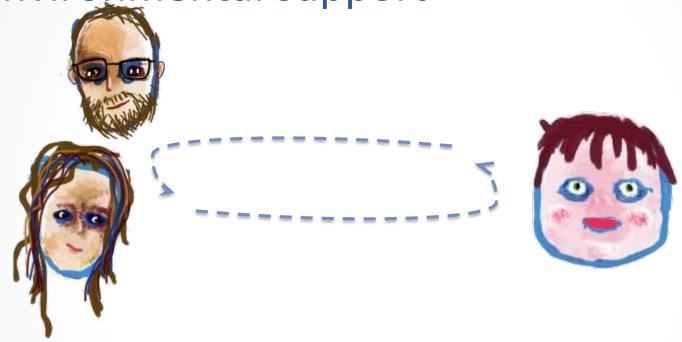



# Individual learning

external: state of the

world

internal: cognitive resources




A (e.g. juvenile) subject S acquires knowledge about its environment.

#### → Process of internalisation

- transition from S's state of ignorance to knowledge
- model of the internal states that enable S's learning

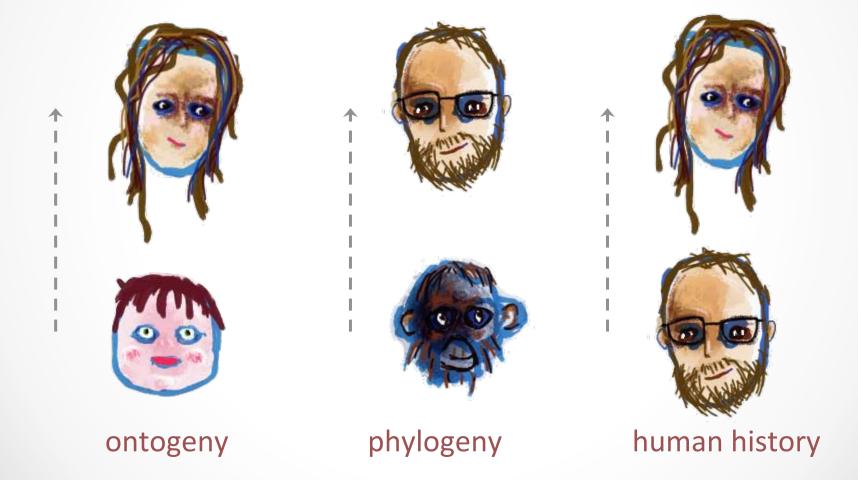
# **Environmental support**



Models may incorporate environmental contributions

- Social learning e.g. teaching (Csibra & Gergely 2009; Sterelny 2012)
- Non-social factors e.g. diet and ecology (Hare & Tomasello 2004)

## Grist and Mills\* (Heyes 2018)


#### Transitions may include:

- Grist information about the world (e.g. propositional contents)
- Mills cognitive technologies/mechanisms (e.g. calculation)



\*Heyes's distinction may not ultimately be workable

# Three kinds of (cognitive) development



# Cognitive development in ontogeny





#### What is it?

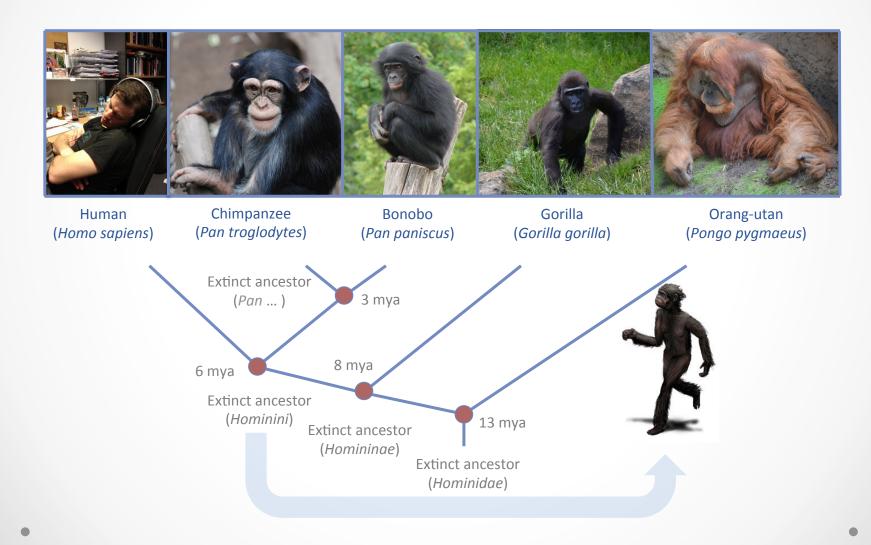
Learning over an individual lifespan – e.g. language acquisition

#### Primary mechanisms

- Whatever cognitive states can be attributed to infants and children
- Environmental 'scaffolding'

# Cognitive development in phylogeny




#### What is it?

The evolution of distinctively human cognitive traits across generations

#### Primary mechanisms

- Genetic factors adaptation, exaptation (Sterelny 2007)
- Non-genetic factors e.g. epigenetics (Laland et al. 2014)

# The great ape family tree



# Cognitive development in human history



#### What is it?

 The historical development of distinctively human cognitive traits over and within generations

#### Primary mechanism

Cultural evolution (Richerson & Boyd 2005; Henrich 2017; Heyes 2018)

#### The cultural evolution of mental arithmetic

Counting systems are a cultural invention.

Ishango bones → basic arithmetic c.20kya

- Calculating 97 ÷ 3 is much more recent.
  - Egyptian/Babylonian arithmetic≈2,000 BC

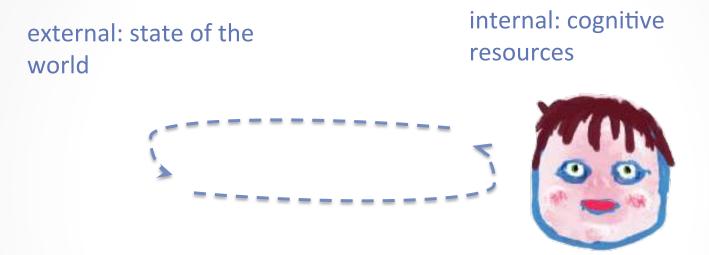


# An Account of Cognitive Development

Balancing explanatory trade-offs

#### What do cognitive models look like? (e.g. Tomasello 2008)

 Philosophical accounts of the cognitive and motivational prerequisites taken to explain behaviour




- Indexed to key developmental stages
- Supported by reference to empirical data

Current data underdetermine models → disagreement/debate about correct explanations



### Rationalist/nativist views (often internalist)



Attribute to child rich starting set – e.g. sentence-like representational resources, including propositional attitudes

Such accounts make explanation of learning easy ...

• ... but learning plays only minor role in ontogenetic development.

### **Empiricist views (often externalist)**

external: state of the world

internal: cognitive resources

Attribute to child minimal starting set of cognitive resources – e.g. ability to track associations

Makes learning harder to explain ...

• ... but preserve intuitions about cognitive change over lifespan.

# Rationalism in phylogeny



- Positing adaptations to explain cognitive development in ontogeny can be appealing ... until one takes phylogeny seriously.
  - → shifting the bump in the rug
  - explanatory burdens left unaddressed (except by just-so stories)

### What is the Philosophy of Cognitive Development?

 Study of how we should construct models of the mind, via its developmental transitions.



- Requires interpreting empirical data ...
- ... in light of theoretical constraints on development.

 Maximally coherent model of the mind



#### Conceptual puzzle I: The paradox of language development

#### STANDARD VIEW

- Language requires ToM
- ToM requires language
  - → paradox



14-months

### Conceptual puzzle II: ToM in Ontogeny



explicit ToM (3-4yrs)
 (Wimmer & Perner 1983)

- Implicit/minimal ToM (Onishi & Baillargeon 2005)
- If implicit and explicit ToM tasks are testing the same thing (false belief example), how should we make sense of this seeming disparity?

#### Debates in the literature

- empiricism vs. nativism
- internalism vs. externalism
- domain general vs. modular cognition
- genes vs. culture



#### References

- Brooks, R (1999) Cambrian intelligence: The early history of the new Al. MIT Press.
- Csibra, G & Gergely, G (2009) Natural pedagogy. TiCS, 13(4), 148-153.
- Hare, B & Tomasello, M (2004) Chimpanzees are more skilful in competitive than in cooperative cognitive tasks. Animal Behaviour, 68(3), 571-581.
- Heyes, C (2018) Cognitive gadgets: The cultural evolution of thinking. Harvard UP.
- Henrich, J (2017) The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton UP.
- Laland, K et al. (2014) Does evolutionary theory need a rethink? Nature News, 514(7521).
- Onishi, K & Baillargeon, R (2005) Do 15-month-old infants understand false beliefs? Science, 308(5719), 255-258.
- Richerson, P & Boyd, R (2008) Not by genes alone: How culture transformed human evolution. Chicago UP.
- Sterelny, K (2007) Dawkins vs. Gould: survival of the fittest. Icon Books.
- Sterelny, K (2012) The evolved apprentice. MIT Press.
- Tooby, J & Cosmides, L (2005) Conceptual foundations of evolutionary psychology. In Buss (ed.) The handbook of evolutionary psychology, 5-67. Wiley & Sons.
- Tomasello, M (2008) Origins of human communication. MIT Press.
- Wimmer, H & Perner, J (1983) Beliefs about beliefs. Cognition, 13(1), 103-128.